Radiofrequenz-Ionenfalle Laserspektroskopie höchster Präzision mit hochgeladenen Ionen
Anbieter zum Thema
Eine neue Klasse atomarer Systeme wird für die Laserspektroskopie zugänglich. Das vorgestellte Verfahren eröffnet das Feld der Laserspektroskopie von HCIs und bildet die Grundlage für neuartige Atomuhren und hochpräzise Tests der Variabilität von Naturkonstanten.

Wissenschaftler des Heidelberger Max-Planck-Instituts für Kernphysik, der Physikalisch-Technischen Bundesanstalt in Braunschweig und der Universität Aarhus in Dänemark haben erstmals die Coulomb-Kristallisierung von hochgeladenen Ionen (Highly-Charged Ions = HCIs) demonstriert. In einer ultrakalten Radiofrequenz-Ionenfalle wurden HCIs durch Wechselwirkung mit lasergekühlten Beryllium-Ionen auf Temperaturen unterhalb von 1 Kelvin gekühlt. Die neue Methode eröffnet das Feld der Laserspektroskopie von HCIs und bildet die Grundlage für neuartige Atomuhren und hochpräzise Tests der Variabilität von Naturkonstanten.
Bei sehr hohen Temperaturen können Atome einen Großteil ihrer Elektronen verlieren und werden so zu hochgeladenen Ionen (Highly-Charged Ions = HCIs). Diese stellen eine umfangreiche Klasse atomarer Systeme dar und bieten mannigfaltige neue Möglichkeiten für Hochpräzisions-Studien in der Metrologie und Astrophysik bis hin zur Suche nach „Neuer Physik“ jenseits des Standardmodells der Teilchenphysik. Laserspektroskopie an kalten Atomen oder Ionen in niedrigen Ladungszuständen hat sich in den letzten Jahrzehnten zur mächtigsten Methode für Hochpräzisionsmessungen entwickelt.
Jedoch war diese bislang auf wenige atomare bzw. ionische Spezies beschränkt und die Präparation kalter HCIs ist heutzutage eine der großen Herausforderungen in der Atomphysik. Das wesentliche Hindernis liegt in der außergewöhnlichen Art und Weise der Produktion von HCIs bei einer Temperatur von mehreren Millionen Grad. Um andererseits die Stärke der Laserspektroskopie auszuspielen, sind Temperaturen von weniger als einem Grad über dem absoluten Nullpunkt erforderlich: Die thermische Energie der Ionen muss demnach um einen Faktor von mindestens 10 Millionen reduziert werden.
Ionen auf Temperaturen unterhalb von 1 Kelvin abkühlen und deren Bewegung einfrieren
In einem Kooperationsprojekt des Heidelberger Max-Planck-Instituts für Kernphysik (MPIK), der Physikalisch-Technischen Bundesanstalt (PTB) und der Universität Aarhus gelang es einem Team von Physikern, HCIs im Vakuum auf Temperaturen unterhalb von 1 Kelvin abzukühlen und dabei deren Bewegung einzufrieren, sodass sie einen sogenannten Coulomb-Kristall formen. Das Verfahren hierzu wurde erstmals am MPIK in der Gruppe um José Crespo López-Urrutia demonstriert.
Lisa Schmöger, die im Rahmen ihrer Doktorarbeit die Abbremseinheit aufgebaut und das Experiment durchgeführt hat, erklärt die dreistufige Prozedur: Zuerst werden HCIs in einer speziellen Ionenfalle, genannt Hyper-EBIT, innerhalb eines dichten und energiereichen Elektronenstrahls bei einer Temperatur von mehreren Millionen Grad und unter extremen Vakuumbedingungen erzeugt und eingeschlossen. Einzelne Pakete von HCIs werden dann aus der Falle extrahiert und in einem evakuierten Strahlrohr beim Durchlaufen eines gepulsten linearen Abbremspotentials verlangsamt und vorgekühlt.
Die Ionen werden sehr behutsam transportiert und schließlich in der kryogenen Radiofrequenz-Paulfalle CryPTEx gespeichert, die am MPIK in Zusammenarbeit mit der Gruppe von Michael Drewsen (Aarhus) aufgebaut worden ist. In der Falle pendeln die HCIs zwischen Spiegelelektroden hin und her, wobei sie langsam an Geschwindigkeit verlieren, bevor sie in einer lasergekühlten Wolke leichter Ionen (einfach geladenes Beryllium) eingebettet werden. Gleich einem Kältebad bewirkt dies nun das indirekte (sympathetische) Kühlen der HCIs.
In einer Radiofrequenzfalle sind die durch die äußeren elektrischen Felder eingeschlossenen Ionen in der Vakuumkammer gezwungen, sich ein kleines Volumen zu teilen, wobei sie sich gegenseitig elektrisch abstoßen. Zusätzlich wird diese millimetergroße Wolke von Beryllium-Ionen mit einem speziellen Laser gekühlt, sodass sie schließlich ausfrieren und einen Coulomb-Kristall bilden, sobald ihre thermische Bewegung gegenüber ihrer Abstoßung vernachlässigbar wird. Hierzu kamen am MPIK ausgeklügelte Lasersysteme zum Einsatz, die an der PTB von Oskar Versolato und seinen Kollegen aufgebaut worden waren.
Sobald die HCIs innerhalb des lasergekühlten Ionenensembles genügend abgekühlt sind, kristallisieren sie ebenfalls und können in verschiedener Anordnung gespeichert werden. Bild 2a zeigt einen reinen Beryllium-Kristall aus etwa 1500 Ionen, aufgenommen von einer CCD-Kamera, welche das von den einzelnen Ionen emittierte Fluoreszenzlicht des Kühllasers nachweist. In Bild 2b erscheinen fünf gefangene Ar13+-Ionen als eine Kette von dunklen „Löchern“, da sie selbst nicht leuchten, aber die sie umgebenden Beryllium-Ionen verdrängen. Bild 2c zeigt einen Kristall aus 29 Beryllium-Ionen mit einem einzelnen Ar13+-Ion im Zentrum.
(ID:43252188)