Akkuforschung Forschungsprojekt soll Lithium-Ionen-Akkus optimieren

Redakteur: Dipl.-Ing. (FH) Thomas Kuther

Lithium-Ionen-Akkus sollen schneller und effizienter laden, länger halten und sich günstiger herstellen lassen – ist dieser Mehrklang möglich? Das will die Technische Universität Ilmenau in einem Forschungsprojekt eruieren, das am 1. November startet.

Anbieter zum Thema

Prof. Andreas Bund: „Eine Optimierung der Ionenleitfähigkeit, der Bildungsgeschwindigkeit und des Passivierungsverhalten würde dazu führen, dass künftige Lithium-Ionen-Batterien nicht nur schneller und effizienter geladen werden können, sondern auch länger halten und kostengünstiger sind. Ich bin optimistisch, dass wir das schaffen.“
Prof. Andreas Bund: „Eine Optimierung der Ionenleitfähigkeit, der Bildungsgeschwindigkeit und des Passivierungsverhalten würde dazu führen, dass künftige Lithium-Ionen-Batterien nicht nur schneller und effizienter geladen werden können, sondern auch länger halten und kostengünstiger sind. Ich bin optimistisch, dass wir das schaffen.“
(Bild: AnLi Fotografie)

Das Forscherteam der TU Ilmenau um Prof. Andreas Bund wird zusammen mit Wissenschaftlern der Universität Marburg erforschen, wie eine Schicht aus Zersetzungsprodukten, die sich während des Batteriebetriebs bildet, in kleinstem Maßstab so positiv beeinflusst werden kann, dass sie Ionen leiten kann und die Materialien sich auch bei hohen Spannungen nicht zersetzen. Das auf drei Jahre angesetzte Forschungsprojekt wird von der Deutschen Forschungsgemeinschaft mit 324.000 Euro gefördert.

Eigentlich dürften Lithium-Ionen-Akkus nicht stabil sein

Lithium-Ionen-Akkus sind so erfolgreich, weil sie große Mengen an Energie bei hohen Spannungen speichern können – bei derart hohen Spannungen, dass diese Akkus eigentlich gar nicht stabil sein dürften. Warum Lithium-Ionen-Akkus dennoch funktionieren und wie dieses Wissen Batterien verbessern kann, damit beschäftigt sich das neue Forschungsprojekt „Untersuchung der Transporteigenschaften sowie der Bildungs- und Wachstumsmechanismen der Festelektrolyt-Interphase (SEI) auf Kohlenstoff-Modellelektroden“ der TU Ilmenau.

Lithium-Ionen-Akku-Forschung seit Beginn der 1990er Jahre

Seit Beginn der 1990er Jahre sind wiederaufladbare Lithium-Ionen-Akkus auf dem Markt. Während andere Batterien üblicherweise Spannungen von ein bis zwei Volt aufweisen, liegt die Spannung von Lithium-Ionen-Batterien bei vier Volt – was besonders in den Anfangszeiten der Lithium-Ionen-Batterien zu Problemen geführt hat: Viele Materialien, insbesondere die seinerzeit zur Verfügung stehenden Batterieelektrolyten, die in Batterien benötigt werden, um Ionen zu transportieren, zersetzen sich bei solch hohen Zellspannungen.

Spezielle Mischung aus verschiedenen Carbonaten

Mit einer speziellen Mischung aus verschiedenen Carbonaten gelang es Wissenschaftlern in den Folgejahren, Elektrolyte herzustellen, die ungleich länger stabil blieben. So wies zum Beispiel eine Mischung aus Ethylencarbonat und Dimethylcarbonat sehr positive Eigenschaften auf. Ersetzte man jedoch das Ethylencarbonat mit dem chemisch sehr ähnlichen Propylencarbonat, erhielt man sehr schlechte Batterien, die schon nach wenigen Lade- und Entladevorgängen versagten. Damals war völlig unklar, weshalb eine solch kleine Änderung bei der Verwendung eines Materials einen so großen Einfluss auf die Batterie hatte.

„Falsche“ Carbonate sind bei hohen Zellspannungen nicht stabil

Erst Jahre später fanden Forscher die Antwort. Verwendet man die „falschen“ Carbonate, sind diese bei hohen Zellspannungen nicht stabil, sondern zersetzen sich kontinuierlich weiter, bis die Batterie versagt. Bei der richtigen Wahl an Carbonaten hingegen bilden die Zersetzungsprodukte eine stabile, nur wenige Nanometer dünne Schicht, die den Elektrolyten vor weiterer Zersetzung schützt.

Forschung an der Passivierungsschicht

Doch die Schicht muss auch in der Lage sein, Lithium-Ionen zu transportieren, andernfalls würde der Ladungsträgertransport in der Zelle zusammenbrechen und die Batterie keine Energie mehr liefern. Wie diese sogenannte Passivierungsschicht beschaffen sein muss, damit sie sowohl zuverlässig passiviert, also den Elektrolyten vor weiterer Zersetzung schützt, als auch gleichzeitig Ionen leiten kann, das erforschen die TU Ilmenau und die Universität Marburg drei Jahre lang in dem neuen Forschungsprojekt. Dazu beobachten die Forscher mit verschiedenen In-situ-Methoden, teilweise im Nanometerbereich, also in kleinstem Maßstab, wie sich die Schicht bildet, wie Pfade für die Ionenleitung entstehen und wie die Schichtbildung verbessert werden kann.

Enormer Einfluss der Grenzschicht auf die Batterie

Prof. Andreas Bund, Leiter des Fachgebiets Elektrochemie und Galvanotechnik, weiß, dass der Einfluss dieser Grenzschicht auf die Batterie, obwohl sie nur extrem dünn ist, enorm ist: „Eine Optimierung der Ionenleitfähigkeit, der Bildungsgeschwindigkeit und des Passivierungsverhalten würde dazu führen, dass künftige Lithium-Ionen-Batterien nicht nur schneller und effizienter geladen werden können, sondern auch länger halten und kostengünstiger sind. Ich bin optimistisch, dass wir das schaffen.“

Artikelfiles und Artikellinks

(ID:47507112)