Temperaturbeständige Antriebskomponenten SiC-Leistungselektronik aus dem 3D-Drucker

Von Kristin Rinortner

Anbieter zum Thema

Höhere Temperaturbeständigkeit, längere Lebensdauer und bessere Kühlung: Das versprechen 3D-gedruckte Gehäuse für SiC-Leistungselektronik-Chips. Erste Prototypen hat ein Team der TU Chemnitz hergestellt. Die Chips werden während des Druckvorgangs an einer dafür vorgesehenen Stelle der Gehäuse positioniert.

SiC-Chips aus dem 3D-Drucker: In einem Labor der Professur Elektrische Energiewandlungssysteme und Antriebe der TU Chemnitz werden beim 3D-Druck von Gehäusen für leistungselektronische Bauelemente keramische und metallische Pasten genutzt, um die Bauteilgeometrie zu erzeugen.
SiC-Chips aus dem 3D-Drucker: In einem Labor der Professur Elektrische Energiewandlungssysteme und Antriebe der TU Chemnitz werden beim 3D-Druck von Gehäusen für leistungselektronische Bauelemente keramische und metallische Pasten genutzt, um die Bauteilgeometrie zu erzeugen.
(Bild: TU Chemnitz / Jacob Müller)

Beim 3D-Druck der Gehäuse für die Leistungshalbleiter aus Siliziumkarbid (SiC) kommen keramische und metallische Pasten zum Einsatz. „Diese werden nach dem Druckvorgang, zusammen – und das ist das Besondere daran – mit dem eingedruckten Chip gesintert“, erzählt Prof. Dr. Ralf Werner, Inhaber der Professur Elektrische Energiewandlungssystem und Antriebe an der TU Chemnitz.

Die Keramik diene dabei als Isolationsmaterial und Kupfer werde zur Kontaktierung der Gate-, Drain- und Source-Flächen der Feldeffekttransistoren verwendet.

Bildergalerie

„Besonders anspruchsvoll war die Kontaktierung der Gate-Fläche, die im Normalfall weniger als einen Millimeter Kantenlänge aufweist“, fügt Prof. Dr. Thomas Basler, Leiter der Professur Leistungselektronik, hinzu, dessen Team das Projekt mit ersten Funktionstests an Prototypen unterstützte.

Antriebskomponenten für Temperaturen über 300 °C

Nach den bereits 2017 an der TU Chemnitz gedruckten keramisch isolierten Spulen und einem gedruckten Motor (2018) stehen nun auch Antriebskomponenten zur Verfügung, die Temperaturen über 300 °C aushalten.

„Der Wunsch nach einer temperaturbeständigeren Leistungselektronik war naheliegend, denn die Gehäuse für leistungselektronische Bauelemente werden traditionell möglichst nahe am Motor installiert und sollten daher über eine ebenso große Temperaturbeständigkeit verfügen“, erklärt Werner.

Ein Forschungsteam um Johannes Rudolph, der das 3D-Druckverfahren mitentwickelt hat, stellte in den vergangenen Monaten mehrere Prototypen der additiv paketierten Leistungshalbleiter auf Siliziumcarbid-Basis her. „Neben der hervorragenden Temperaturbeständigkeit bietet diese Technologie noch weitere Vorteile“, so Rudolph.

Zum einen versprechen sich die Wissenschaftler durch die beidseitige, flächige und lotfreie Kontaktierung der Chips eine längere Lebensdauer hinsichtlich der Anzahl der Lastwechselzyklen sowie eine bessere Kühlung und damit Ausnutzbarkeit der Chips.

Ergänzendes zum Thema
3D-Multimaterialdruck

Beim 3D-Multimaterialdruckverfahren werden hochviskose Pasten durch eine Düse extrudiert, um so schichtweise einen dreidimensionalen Körper aufzubauen. Ausgangsstoff der Pasten können Pulver aus Kupfer, Eisen oder anderen metallischen Werkstoffen und deren Legierungen sowie keramische Pulver sein. Diese werden je nach Geometrie des zu druckenden Körpers mit speziell zugeschnittenen Bindern versetzt. Nachdem das Druckteil, der sogenannte Grünkörper, getrocknet ist, verfügt dieses über eine ausreichende Festigkeit, damit eine anschließende Wärmebehandlung stattfinden kann. Während des Sinterns wird der Binder vollständig ausgetrieben und die metallischen bzw. keramischen Partikel verschmelzen miteinander. Dies führt zu einer Volumenreduktion, die bei der Erstellung der CAD-Daten berücksichtigt werden muss. Das Ergebnis der Wärmebehandlung ist ein solider Körper mit geringer Restporosität

Die Stärke des 3D-Multimaterialverfahrens liegt in der Möglichkeit, mehrere Materialien gleichzeitig während eines Druckvorganges einzusetzen. So lassen sich zum Beispiel elektrisch leitende Strukturen aus Kupfer zusammen mit deren Isolation drucken. Diese besteht aus keramischen Werkstoffen, die konventionellen organischen Isolationsmaterialien aus Kunststoff in vielen physikalischen Eigenschaften, wie der Hitzebeständigkeit oder dem Wärmeleitvermögen, überlegen sind. Auf diese Weise lassen sich elektrische Spulen mit deutlich höherer Temperaturbeständigkeit herstellen. In Kombination mit ferromagnetischen Materialien wie Eisen lassen sich darüber hinaus ganze elektrische Maschinen bzw. deren Komponenten in einem Druckvorgang fertigen. Daneben erlaubt das Verfahren auch freitragende Strukturen, wodurch sich Körper mit geschlossenen und leeren Hohlräumen herstellen lassen. Solche inneren Strukturen bieten interessante Ansätze für effiziente aktive oder passive Kühlkonzepte. Kommen zusätzlich noch Stützstrukturen zum Einsatz, ist eine nahezu beliebige dreidimensionale Formgebung möglich. Zusätzlich zeichnet sich das Verfahren durch eine hohe Materialeffizienz aus. Nahezu das gesamte eingesetzte Material kann für den Druckprozess verwendet werden.

Speziell angepasste Kühlgeometrien im Gehäuse

„Aufgrund der im Vergleich zu Kunststoffen höheren thermischen Leitfähigkeit der Keramik und der für den 3D-Druck üblichen Designfreiheit lassen sich leicht speziell angepasste Kühlgeometrien im Gehäuse und an dessen Oberfläche realisieren“, versichert Rudolph.

Zudem sei so zur Herstellung eines leistungselektronischen Bauelements nach der Produktion der Siliziumcarbid-Chips selbst nur ein einziger Arbeitsschritt notwendig.

Das Team um Johannes Rudolph will das Verfahren zur Marktreife weiterentwickeln. Potentielle Kooperationspartner sind willkommen daran mitzuwirken, beispielsweise im Rahmen gemeinsamer Forschungsprojekte.

(ID:48433303)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung.

Aufklappen für Details zu Ihrer Einwilligung