Schaltungstipp Stromschleifen gespeistes Feldgerät mit HART-Schnittstelle

Autor / Redakteur: Michal Brychta * / Kristin Rinortner

Die hier vorgestellte Schaltung ist eine Beispielanwendung für integrierte Sensorik mit 4/20-mA-Analogausgang und HART-Schnittstelle.

Anbieter zum Thema

Bild 1: Stromschleifen gespeistes 4/20mA Feldgerät mit HART-Schnittstelle (Vereinfachtes Schaltbild)
Bild 1: Stromschleifen gespeistes 4/20mA Feldgerät mit HART-Schnittstelle (Vereinfachtes Schaltbild)
(ADI)

Bei der Schaltung in Bild 1 handelt es sich um ein industrietaugliches Stromschleifen gespeistes Feldgerät mit 4/20-mA-Analogausgang und einer HART-Schnittstelle (Highway Addressable Remote Transducer). Die HART-Technologie ist eine digitale Zweiwege-Kommunikation, bei der ein FSK-Signal (Frequency-Shift-Keyed) mit 1 mAss auf das Standard-Analogsignal (4/20 mA) moduliert wird. Dies erlaubt Funktionen wie ferngesteuerte Kalibrierung, Fehlerabfrage und die Übertragung von Prozessvariablen, die in Anwendungen wie Temperatur- und Drucksteuerungen erforderlich sind.

Bildergalerie
Bildergalerie mit 14 Bildern

Die Schaltung hat einen Compliance-Test durchlaufen, wurde getestet, verifiziert und bei der HART Communication Foundation (HCF) registriert.

Die Schaltung besteht aus dem ADuCM360, einem analogen Präzisions-Mikrocontroller mit geringem Energieverbrauch, dem AD5421, einem 16-Bit-D/A-Wandler, der aus der 4/20mA-Schleife versorgt wird, und dem AD5700, einem HART-konformen Modem-IC.

Analoge Front-End-Schnittstelle

Die analoge Eingangsstufe ADuCM360 enthält einen Zweifach Sigma/Delta-A/D-Wandler mit 24 Bit. Ebenfalls enthalten sind Instrumentenverstärker mit programmierbarer Verstärkung, eine Präzisions-Band-Gap-Referenz, programmierbare Stromquellen, ein flexibler Multiplexer und viele weitere Funktionen. Der direkte Anschluss an Analogsensoren wie Drucksensorbrücken, Widerstandthermometer, Thermoelemente und andere Sensortypen ist möglich.

Die Schaltung in Bild 1 zeigt eine Beispielverbindung für einen primären Brückensensor und ein sekundäres Widerstansthermometer. Die flexible Eingangsstufe des ADuCM360 ermöglicht jedoch viele andere Konfigurationen zur Entwicklung beliebiger und präziser Sensoranwendungen.

Primärer Sensoreingang

Der auf dem Chip des ADuCM360 befindliche ADC0 misst den primären Sensor des Feldgerätes, in Bild 1 als Brückenwandler dargestellt. Der Sensor ist für eine höhere elektromagnetische Störfestigkeit über ein RC-Filternetzwerk an die analogen Eingangspins AIN0 und AIN1 angeschlossen. Die Gleichtakt-Filterbandbreite beträgt etwa 16 kHz, die differenzielle Bandbreite 800 Hz.

Die Referenzspannungseingänge UREF+ und UREF− am ADuCM360 erfassen die Brückenanregungsspannung und eine ratiometrische Messung durch. Damit wird die Messung unabhängig vom exakten Wert der Sensor-Versorgungsspannung. Der integrierte Masseschalter trennt die Brückenanregung dynamisch und spart so Energie, falls die Anwendung dies verlangt.

Sekundärer Sensoreingang

Die Schaltung nutzt einen Pt-100-Widerstandsthermometer als sekundären Sensor. Das Widerstandsthermometer (RTD) misst die Temperatur des primären Sensors und ermöglicht somit eine Temperaturkompensation des primären Sensors, falls erforderlich.

Die programmierbare Stromquelle ADuCM360 versorgt das Widrestandsthermometer über den Anschluss AIN4. Der ADC1 auf dem ADuCM360 misst die Spannung über dem RTD mit Hilfe der als differenziellen Eingang konfigurierten Anschlüsse AIN3 und AIN2. Die genaue Höhe des Stromes, der durch das Widerstandsthermometer fließt, wird über einen Präzisionswiderstand (RREF) ermittelt und mit dem ADC1 über den Anschluss AIN7 gemessen. Der ADC1 nutzt die integrierte Band-Gap-Spannungsreferenz.

Digitale Datenverarbeitung, Algorithmus und Kommunikation

Der ADuCM360 enthält einen 32 Bit ARM Cortex M3 RISC-Prozessor mit integriertem 128 kByte nichtflüchtigem Flash/EE Memory, 8 kByte SRAM und einem 11-kanaligen DMA-Controller, der Kommunikationsperipherie (2× SPI, UART, I²C) unterstützt.

Die Demonstrationssoftware führt die Initialisierung und Konfiguration aus, verarbeitet Daten von den Analogeingängen, steuert den Analogausgang und übernimmt die HART-Kommunikation.

Analogausgang

Im AD5421 befindet sich ein 16-Bit-Präzisions-D/A-Wandler mit 4/20mA schleifenversorgtem Ausgangstreiber. Das Bauteil stellt alle Funktionen bereit, die für den Analogausgang des Feldgerätes erforderlich sind.

Der AD5421 wird über die SPI-Schnittstelle mit dem Controller ADuCM360 verbunden.

Ebenfalls im AD5421 enthalten sind eine Reihe von Diagnosefunktionen für die 4/20mA-Schleife. Der Hilfs-ADC misst mit einem Widerstandsteiler 20 MΩ/1 MΩ am Anschluss VLOOP die Spannung über den Schleifenanschlüssen des Gerätes. Der A/D-Wandler detektiert über den integrierten Sensor auch die Chiptemperatur. Der Controller ADuCM360 konfiguriert und liest die gesamte Diagnose des AD5421 aus. Alternativ kann der AD5421 auch unabhängig arbeiten.

Ein Beispiel: Falls die Kommunikation zwischen dem Controller und dem AD5421 versagt, setzt der AD5421 nach einer bestimmten Zeit seinen Analogausgang automatisch auf einen Alarmstrom von 3,2 mA. Dieser Alarmstrom signalisiert dem Host, dass das Feldgerät nicht funktioniert.

Die Software steuert jede Änderung des Ausgangsstromes von einem Wert zum anderen, um Störungen der HART-Kommunikation zu vermeiden.

(ID:42266746)