Neuronale Netze effizienter trainieren Deutliche Reduzierung des Stromverbrauchs beim Training von KI

Quelle: TU München 2 min Lesedauer

Anbieter zum Thema

Das Training neuronaler Netze erfordert enorme Rechenressourcen und damit sehr viel Strom. Forschende der TU München haben eine Methode entwickelt, die hundertmal schneller und damit wesentlich energieeffizienter funktioniert: Statt schrittweise vorzugehen, werden die Parameter auf Grundlage ihrer Wahrscheinlichkeit direkt aus den Daten berechnet.

Der SuperMUC-NG des Leibniz-Rechenzentrums, der achtschnellste HPC weltweit. Forschende der TU München haben die Energieeffizienz ihres neuen Trainingsverfahrens für Neuronale Netwerke an diesem System erprobt.(Bild:  Veronika Hohenegger, LRZ)
Der SuperMUC-NG des Leibniz-Rechenzentrums, der achtschnellste HPC weltweit. Forschende der TU München haben die Energieeffizienz ihres neuen Trainingsverfahrens für Neuronale Netwerke an diesem System erprobt.
(Bild: Veronika Hohenegger, LRZ)

KI-Anwendungen, wie Large Language Models (LLMs), sind aus unserem Alltag nicht mehr wegzudenken. Die benötigten Rechen-, Speicher- und Übertragungskapazitäten werden dabei von Rechenzentren zur Verfügung gestellt. Doch der Energieverbrauch dieser Zentren ist enorm: 2020 lag er in Deutschland bei rund 16 Milliarden Kilowattstunden – etwa ein Prozent des gesamten deutschen Strombedarfs. Für das Jahr 2025 wird ein Anstieg auf 22 Milliarden Kilowattstunden prognostiziert.

Hundertfach schneller, ähnlich genau

Hinzu kommt, dass in den kommenden Jahren komplexere KI-Anwendungen die Anforderungen an Rechenzentren noch einmal deutlich erhöhen werden. Diese beanspruchen für das Training von neuronalen Netzen enorme Rechenressourcen. Um dieser Entwicklung entgegenzuwirken, haben Forschende eine Methode entwickelt, die hundertmal schneller ist und dabei vergleichbar genaue Ergebnisse liefert wie bisherige Trainingsmethoden. Damit sinkt der benötigte Strombedarf für das Training erheblich.

Neuronale Netze, die in der KI für Aufgaben wie Bilderkennung oder Sprachverarbeitung eingesetzt werden, sind in ihrer Funktionsweise durch das menschliche Gehirn inspiriert. Sie bestehen aus miteinander verknüpften Knoten, den sogenannten künstlichen Neuronen. Diese erhalten Eingabesignale, die dann mit bestimmten Parametern gewichtet und aufsummiert werden. Wird ein festgelegter Schwellenwert überschritten, wird das Signal an die darauf folgenden Knoten weitergegeben. Zum Training des Netzwerks werden die Parameterwerte anfangs normalerweise zufällig gewählt, zum Beispiel in einer Normalverteilung. Sie werden dann über kleinste Änderungen angepasst, um die Netzwerkvorhersagen langsam zu verbessern. Da für diese Trainingsmethode viele Wiederholungen benötigt werden, ist sie extrem aufwendig und benötigt viel Strom.

Parameter werden auf Grundlage ihrer Wahrscheinlichkeit ausgewählt

Felix Dietrich, Professor für Physics-enhanced Machine Learning und sein Team haben nun ein neues Verfahren entwickelt. Statt die Parameter zwischen den Knotenpunkten iterativ zu bestimmen, basiert ihr Ansatz auf Wahrscheinlichkeitsberechnungen.

Die hier gewählte, probabilistische Methode basiert darauf, gezielt Werte zu nutzen, die sich an kritischen Stellen der Trainingsdaten befinden. Sie fokussiert sich also auf die Stellen, an denen sich die Werte besonders stark und schnell ändern. Die aktuelle Studie zielt darauf ab, mit diesem Ansatz energieerhaltende dynamische Systeme aus Daten zu lernen. Solche Systeme verändern sich im Laufe der Zeit nach bestimmten Regeln und finden sich unter anderem in Klimamodellen oder auf dem Finanzmarkt.

„Unsere Methode ermöglicht es, die benötigten Parameter mit minimalem Rechenaufwand zu bestimmen. Dadurch können neuronale Netze erheblich schneller und dadurch energieeffizienter trainiert werden“, erklärt Felix Dietrich. Darüber hinaus habe sich gezeigt, dass die neue Methode in ihrer Genauigkeit mit iterativ trainierten Netzwerken vergleichbar sei.(sg)

(ID:50344945)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung