Alternative zu Graphen TU München stellt Verbundmaterial aus Silizium-Nanoblättern und Kunststoff vor

Redakteur: Franz Graser

Silizium-Nanoblätter besitzen herausragende optoelektronische Eigenschaften, ähnlich denen von Graphen. Allerdings sind sie instabil. Ein Forschungsteam der TU München hat erstmals ein Verbundmaterial aus den Nanoblättern und einem Kunststoff vorgestellt, das UV-beständig und leicht zu verarbeiten ist.

Anbieter zum Thema

Spirale aus Nanokompositmaterial.
Spirale aus Nanokompositmaterial.
(Bild: Bild: Tobias Helbich / TUM)

Ähnlich wie Kohlenstoff bildet Silizium zweidimensionale Netzwerke, die nur eine Atomlage dick sind. Wie das Graphen, für dessen Entdeckung Andre Geim und Konstantin Novoselov 2010 den Nobelpreis erhielten, verfügen sie über herausragende optoelektronische Eigenschaften. Einsetzbar wären Silizium-Nanoblätter daher in der Nanoelektronik, beispielsweise für biegbare Displays, als Material für Feldeffekttransistoren oder für Photodetektoren. Aufgrund seiner Fähigkeit Li-Ionen zu speichern, ist es auch als Anodenmaterial für Lithiumionen Akkus im Gespräch.

„Silizium-Nanoblätter sind besonders interessant, weil unsere gesamte Informationstechnologie heute auf Silizium basiert und man anders als beim Graphen nicht auf einen anderen Grundstoff wechseln müsste“, erklärt Tobias Helbich vom Wacker-Lehrstuhl für Makromolekulare Chemie der TU München. „Jedoch sind die Nanoblätter alleine sehr anfällig und werden von UV-Licht schnell zersetzt, was seine Anwendung bisher stark einschränkte.“

Nun ist es Helbich zusammen mit Professor Bernhard Rieger, Inhaber des Lehrstuhls für Makromolekulare Chemie, erstmals gelungen die Silizium-Nanoblätter in Kunststoff einzubetten und so vor der Zersetzung zu schützen. Gleichzeitig werden die Nanoblätter im selben Schritt modifiziert und so gegen Oxidation geschützt. Es ist das erste Nanokomposit auf Basis von Silizium-Nanoblättern.

„Das Besondere an unserem Nanokomposit ist, dass es die positiven Eigenschaften seiner beiden Bestandteile vereint“, erklärt Tobias Helbich. „Die Polymermatrix absorbiert das Licht im UV-Bereich, stabilisiert die Nanoblätter und verleiht dem Material die Eigenschaften des verwendeten Polymers, während gleichzeitig die außergewöhnlichen optoelektronischen Eigenschaften der Nanoblätter erhalten bleiben.“

Seine Flexibilität und Beständigkeit gegen äußere Einflüsse führen zudem dazu, dass sich das neu entwickelte Material mit gängigen Verfahren der Polymertechnik industriell verarbeiten lässt. Eine industrielle Anwendung rückt so in greifbare Nähe.

Besonders für einen Einsatz im Bereich des gerade neu aufkommenden Gebiets der Nanoelektronik eignen sich die Komposite. Hier werden „klassische“ elektronische Komponenten wie Schaltkreise und Transistoren auf Basis neuer Nanomaterialien in Größen verwirklicht, die unter 100 Nanometern liegen. Auf diese Weise lassen sich ganz neue Technologien verwirklichen – etwa für schnellere Computerprozessoren.

Eine erste erfolgreiche Anwendung des von Helbich konstruierten Nanokomposits wurde erst vor kurzem im Rahmen des des ATUMS Graduiertenprogramms (Alberta/TUM International Graduate School for Functional Hybrid Materials vorgestellt: Alina Lyuleeva und Prof. Paolo Lugli vom Lehrstuhl für Nanoelektronik der TU München gelang es in Zusammenarbeit mit Helbich und Rieger, einen wenige Nanometer großen Photodetektor zu bauen.

Dafür trugen sie die in eine Polymermatrix eingebetteten Silizium-Nanoblätter auf eine mit Goldkontakten beschichtete Siliziumdioxid-Oberfläche auf. Aufgrund seiner geringen Abmessungen spart ein solcher nanoelektronischer Detektor viel Platz und Energie.

(ID:44565729)