Messtechnik extrem Ein Elektron wiegen – oder wie man eine Mücke in einem A380 findet...
Elektronen sind die Grundlage der Elektronik. Um ihre Masse – und damit ihre Eigenschaften – mit bislang ungekannter Präzision zu bestimmen, sind Heidelberger Physiker ungewöhnliche Wege gegangen.
Anbieter zum Thema

Elektronen sind der Quantenkitt unserer Welt. Ohne Elektronen gäbe es keine Elektronik, keine Chemie, und Licht könnte nicht mit Materie wechselwirken. Wären Elektronen nur etwas schwerer oder leichter als sie es sind, sähe die Welt radikal anders aus. Wie aber wiegt man ein Teilchen, das so winzig ist, dass es bis dato als punktförmig gilt? Dieses Kunststück gelang nun einer Kooperation unter Beteiligung von Physikern des Max-Planck-Instituts für Kernphysik in Heidelberg. Sie „wog“ die Masse des Elektrons 13 Mal präziser als bisher bekannt. Da die Elektronenmasse in fundamentalen Naturkonstanten steckt, ist das für die Grundlagenphysik wichtig.
„Normalerweise muss man in der Präzisionsphysik zehn, zwanzig Jahre forschen, um einen fundamentalen Wert um eine Größenordnung zu verbessern“, sagt Klaus Blaum. Mit Freude berichtet der Direktor am Max-Planck-Institut für Kernphysik in Heidelberg von der „enormen Reaktion“, die das jüngste Resultat auf wissenschaftlichen Tagungen hervorruft. In nur wenigen Jahren hat es eine Forschungskooperation um die Heidelberger geschafft, den Wert der Masse eines Elektrons um einen Faktor 13 genauer zu bestimmen.
Die extrem große Empfindlichkeit der dazu verwendeten „Waage“ veranschaulicht der Projektleiter Sven Sturm so: „Umgerechnet auf einen Airbus A380 könnten wir allein durch Wiegen feststellen, ob eine Mücke als blinder Passagier an Bord ist.“
Dass Physiker die Masse des Elektrons nun auf elf Stellen hinter dem Komma genau kennen, ist wichtig, weil Elektronen praktisch überall mitmischen. Selbst zum Lesen dieses Texts müssen in den Augen Elektronen Licht in Nervenimpulse umwandeln. Diese ultrawinzigen Teilchen, die nach heutigem Wissen keinerlei Ausdehnung besitzen, stellen also eine ungeheure Macht in der Natur dar.
Mit ihrer Masse hängt unter anderem der Wert fundamentaler Naturkonstanten zusammen. Dazu zählt beispielsweise die sogenannte Feinstrukturkonstante: Diese Konstante bestimmt die Form und die Eigenschaften von Atomen und Molekülen. „Sie beschreibt im Grunde alles, was wir sehen“, sagt Blaum, „denn sie spielt in der Wechselwirkung zwischen Licht und Materie eine zentrale Rolle.“ Hätte die Natur den Elektronen eine nur etwas andere Masse verpasst, würden die Atome ganz anders aussehen. Eine solche Welt wäre wohl sehr fremdartig.
Masse des Elektrons wird zusammen mit einem Kohlenstoffkern gemessen
Die Masse des Elektrons fließt zudem als eine zentrale Größe in das sogenannte Standardmodell der Physik ein. Dieses Modell beschreibt drei der vier heute bekannten Grundkräfte der Physik. Obwohl es beeindruckend gut funktioniert, ist heute trotzdem klar, dass seine Gültigkeit begrenzt ist. Wo diese Grenzen des Standardmodells liegen, ist allerdings offen. Daher kann eine präzise Kenntnis der Elektronenmasse bei der Suche nach bisher unbekannten physikalischen Zusammenhängen entscheidend mithelfen.

Beim Elektron standen die Physiker vor dem Problem, dass alle sinnvoll als Referenzgewichte einsetzbaren Elementarteilchen viel schwerer sind. „Das Proton oder das Neutron zum Beispiel sind zweitausend Mal schwerer“, erklärt Blaum, „das wäre als wenn man ein Kaninchen mit einem Elefanten als Gegengewicht wiegen wollte.“ Bei ihrem Experiment entschieden die Physiker sich deshalb für einen Trick. Sie brachten zwar zwei höchst ungleiche Massen zusammen, versuchten aber erst gar nicht, das Kaninchen Elektron mit Hilfe eines atomaren Elefanten direkt zu wiegen.
Das Experiment hat Sven Sturm als Blaums Doktorand an der Universität Mainz aufgebaut. „Die Hauptherausforderung war die Entwicklung der Messmethode“, sagt er. Als Postdoktorand leitet er im Anschluss das Team, das die präzise Messung der Elektronenmasse durchführte. Die Physiker paarten dabei ein einzelnes Elektron mit einem nackten Kern des ungleich schwereren Kohlenstoff (C)-12-Isotops. Dieses Kohlenstoffisotop ist mit Bedacht ausgewählt, denn es legt die sogenannte atomare Masseneinheit fest. Damit ist die Masse von C-12 per Definition exakt bekannt, und ihr Einsatz als Referenz schließt eine wichtige Fehlerquelle aus. „Die Kontrolle der systematischen Fehler ist ganz entscheidend“, betont Sturm.
(ID:42541345)