Diodenlaser und Quantenlichtmodule Wie verschränkte Photonenpaare beim Kampf gegen Krebs helfen

Von Dipl.-Ing. (FH) Hendrik Härter 2 min Lesedauer

Anbieter zum Thema

Im Rahmen eines Projekts soll sich die Messzeit in der klinischen Krebsdiagnostik erheblich verkürzen. Helfen soll ein spektral aufgelöstes Bildgebungsverfahren auf Basis von verschränkten Photonenpaaren.

Die Messzeit in der klinischen Krebsdiagnostik soll sich mithilfe von spektral aufgelösten Bildgebungsverfahren erheblich verkürzen.(Bild:  FBH/ Immerz)
Die Messzeit in der klinischen Krebsdiagnostik soll sich mithilfe von spektral aufgelösten Bildgebungsverfahren erheblich verkürzen.
(Bild: FBH/ Immerz)

Krebs lässt sich nicht verhindern und muss deshalb frühzeitig und differenziert erkannt werden. Nur dann können Mediziner schnell eingreifen und Patienten heilen. Dabei helfen Gewebeschnitte von Patienten, die schnell analysiert werden müssen. Damit dies gelingt, muss die Präparationszeit wegen der vielen zu untersuchenden Schnitte verkürzt werden. Ziel ist es, die Tumorzellen mit höchster Zuverlässigkeit nachzuweisen – vorzugsweise ohne Färbung (markierungsfrei) und binnen kürzester Messzeit.

Unter Laborbedingungen wurde mittlere Infrarotstrahlung (MIR) dafür bereits erfolgreich eingesetzt. Jedoch sind die derzeitigen Messzeiten für eine schnelle Diagnose viel zu lang. Daher ist eine Validierung und ein routinemäßiger Einsatz in Krankenhäusern bislang nicht möglich. Den MIR-Ansatz auf die klinische Diagnostik zu übertragen bleibt daher herausfordernd, da der Einsatz von MIR-Licht technisch anspruchsvoll ist. Das betrifft sowohl die Erzeugung als auch den Nachweis in der Anwendung.

Krebs schneller erkennen und bekämpfen

Im Projekt „Quantum‐Enhanced Early Diagnostics” (quantengestützte Frühdiagnostik – QEED), das vom Bundesministerium für Bildung und Forschung im Rahmen des Programms „Quantentechnologien – von den Grundlagen zum Markt“ gefördert wird, bündeln zehn Partner aus Forschung und Industrie ihre Kompetenzen. Gemeinsam wollen sie in einem neuartigen Ansatz die Voraussetzungen schaffen, um Krebs schneller erkennen und bekämpfen zu können.

Wissenschaftler am Berliner Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH) werden die benötigten Hochleistungsdiodenlaser bei 1170 nm und 720 nm in einer Master-Oscillator-Power-Amplifier- (MOPA-Konfiguration realisieren. Die MOPAs werden dann in eine eigens entwickelte neuartige Technologieplattform zu Quantenlichtmodulen integriert. Anschließend montiert das EntwicklungsZentrum des FBH die Module gemeinsam mit den Komponenten der Projektpartner in das fertige QEED-System.

Deutlich kürzere Messzeiten und höhere Zuverlässigkeit

Im Projekt sollen Messinformationen aus dem klinisch relevanten MIR-Bereich in den gut detektierbaren Nahinfrarotbereich (NIR) übertragen werden. Dazu wird ein neuartiges spektral aufgelöstes Bildgebungsverfahren entwickelt, das auf verschränkten Photonenpaaren beruht. Die QEED-Mikroskopie nutzt dazu eine Quantensensortechnologie, mit der Gewebeproben markierungsfrei untersucht werden sollen.

Die Messzeit für ein 10-Megapixel-Bild soll sich dabei auf nur zwei Minuten verkürzen. Durch die einfache Präparation kombiniert mit einer schnellen Messung ist ein hoher Probendurchsatz möglich – und damit erstmals eine Integration in klinische Arbeitsabläufe. Von dieser Entwicklung profitieren Patienten, da Biopsieproben künftig schneller und zuverlässiger diagnostiziert werden können.

Darüber hinaus soll der Ansatz dazu beitragen, den Anteil der falsch-negativen und falsch-positiven Ergebnisse zu minimieren, die laut dem Deutschen Krebsforschungszentrum mit einem hohen Leidensdruck verbunden sind. Dadurch soll die Bereitschaft von Patienten steigen, an Vorsorgeuntersuchungen teilzunehmen.

Demonstratoren für Forschung und klinischen Alltag

Auf der Basis ultra-heller Photonenpaar-Quellen und der darauf abgestimmten Messung und Analytik sind verschiedene Demonstratoren geplant – für die wissenschaftliche (biomedizinische) Forschung und für die klinische Routine mit einer integrierten Fluoreszenzeinheit zur automatisierten Pathologie. Darüber hinaus entwickeln die Partner die neuartigen Module für das QEED-System als unabhängige Komponenten zu eigenständigen Produkten weiter.

(ID:49483572)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung