Neue Lichtwellenleiter Hohle Glasfasern leiten UV-Licht zerstörungsfrei
Mit einer photonischen Kristallfaser haben Forscher einen neuen Lichtwellenleiter geschaffen, der UV-Licht leitet, ohne davon zerstört zu werden.
Anbieter zum Thema

Wer Licht in Glasfasern auf die Reise schicken will, und zwar möglichst verlustfrei, nimmt am besten Infrarotlicht, so wie es etwa bei den weltweiten Telekommunikationsnetzwerken der Fall ist. Aber für bestimmte Anwendungen, etwa für spektroskopische Untersuchungen an Ionen oder Atomen, braucht man (Laser-)Licht im ultravioletten Spektralbereich, das jedoch herkömmliche Glasfasern schnell zerstört.
Nun haben Forscher des Max-Planck-Instituts für die Physik des Lichts (MPL) in Erlangen und des QUEST-Instituts in der Physikalisch-Technischen Bundesanstalt (PTB) eine neue Sorte von Glasfasern mit einem hohlen Kern erprobt und festgestellt: Diese Fasern leiten UV-Laserlicht zerstörungsfrei und mit akzeptablen Verlusten. Ihre Untersuchungen, über die sie jüngst in der Zeitschrift Optics Express berichteten, sind für viele Anwendungen interessant: Neben der Präzisionsspektroskopie an Atomen oder Ionen und dem Einsatz in optischen Atomuhren und Quantencomputern sind das etwa die Fluoreszenzmikroskopie in der Biologie, die Untersuchung von Prozessplasmen, Verbrennungsstudien an Ruß oder die Spektroskopie von Treibhausgasen.

Im Max-Planck-Institut für die Physik des Lichts in Erlangen experimentiert man schon seit einigen Jahren mit anderen Glasfaser-Sorten. Jetzt hat sich gezeigt, dass eine bestimmte Bauart besonders gut für UV-Licht geeignet ist: eine mikrostrukturierte photonische Kristallfaser (PCF) mit einer sogenannten Kagomé-Struktur (einem speziellen Muster aus regelmäßig angeordneten Drei- und Sechsecken) und einem hohlen Kern von 20 μm Durchmesser.
Durch diesen Kern wird das Licht einmodig – d. h. mit einer räumlichen Intensitätsverteilung, die der Form einer Gauß’schen Glockenkurve ähnelt – geleitet. Die entscheidende Frage, ob das wirklich einmodig und zerstörungsfrei geschieht, sollten die Messtechnik-Experten vom QUEST-Institut in der PTB beantworten. Ihr Ergebnis: Bei dem verwendeten UV-Strahl mit einer Wellenlänge von 280 nm war ein einmodiges Transmissionsverhalten festzustellen, und selbst nach mehr als 100 Stunden Betriebsdauer bei einer Leistung von 15 mW traten keine UV-induzierten Schäden auf.
Auch einen ersten Anwendungstest bestanden die neuen Fasern: Die QUEST-Forscher setzten sie erfolgreich für ihre spektroskopischen Untersuchungen an gefangenen Ionen ein. Der durch die neue Faser stabilisierte UV-Laserstrahl ermöglichte es, den internen Zustand der Ionen besser abzufragen. Neben den Anwendern solcher spektroskopischen Untersuchungen, etwa in Astronomie, Chemie oder Grundlagenforschung in der Physik, könnte das auch denjenigen Forschern nützen, die Quantencomputer entwickeln. Denn die internen Zustände eines Teilchens stellen dabei die neuen digitalen Nullen und Einsen dar.
(ID:42772605)