In wenigen Jahren soll es bereits 3,5 Milliarden 5G-fähige Mobilfunkgeräte geben. Doch das ist erst der Anfang: Mit dem 6G-Standard sollen sich Städte schon wenig später endgültig in funkende Landschaften verwandeln. Das erfordert eine Infrastruktur mit unzähligen Antennen.
Kleine Funkzellen: In den urbanen Zentren wird die 5G-Vernetzung schnell ausgerollt. Ein Ausbau auf künftigen 6G-Standard dürfte noch zehn Jahre dauern – auch wegen der vielen Antennenstandorte.
Derzeit wird in Deutschland zwar erst 5G ausgebaut, aber Forscher und Unternehmen entwickeln bereits die Technik der nächsten Generation. 6G, so heißt es nun, bringe erst das, was man sich vom Vorgänger versprochen habe: Highspeed-Internet mit schwindelerregenden Übertragungsraten für neuartige, datenintensive Anwendungen. Der Preis dafür ist eine neue Infrastruktur mit einer schier unvorstellbaren Anzahl an kleinen Funkzellen, die überall um uns herum unsichtbar verteilt sind.
Eine schnellere Kommunikation zwischen Geräten und Antennen erreicht man, indem man für die Datenübertragung höhere Frequenzen nimmt. Die wiederum bestehen aus Wellen - die Berge und Täler solcher Wellen vermitteln die digitalen Informationen. Sie werden von Rechnern in Zahlen, Texte oder audiovisuelle Inhalte zurückübersetzt. 6G-Mobilfunknetze nutzen als Träger die sogenannten Terahertz-Wellen. Optimisten erhoffen sich damit Übertragungsraten von bis zu einem Terabit pro Sekunde. Geht man davon aus, dass ein durchschnittlicher Netflix-Film in guter Qualität ungefähr fünf Gigabyte an Daten belegt, könnte man sich nun etwa 25 Filme in einer Sekunde auf sein Mobilgerät laden. Theoretisch. Praktisch teilen sich meist viele Nutzer eine Funkzelle - sie könnten in einem städtischen Park also gleichzeitig Videos streamen.
Autos, Kleider, Brillen - alles vernetzt. Was kommt nach dem Mobiltelefon?
Aber das ist nicht die einzige Hoffnung. In einem Werbefilm stellt Finnland, das mehr als 200 Millionen Euro in 6G-Forschung investiert, eine andere Zukunftsvision vor: Eine schwangere Frau fährt in der Bahn. Sie schaut auf ihre Handfläche, auf der ein Interface projiziert ist. Indem sie über ihre Hand wischt, bedient sie es, als wäre ihre Haut ein Touchscreen. Sie schickt Daten über ihren Gesundheitszustand an einen Arzt oder eine Hebamme. Die Daten stammen aus der intelligenten Kleidung, die ihren Körper in Echtzeit überwacht.
Künstliche Intelligenz, haptische Interfaces, intelligente Produktion, Telepräsenz in Form von Holographie und nicht zuletzt das autonome Fahren: Die IT-Branche lebt von solchen Visionen, und 5G scheint ihr dafür nicht mehr genug zu sein. Forscher betrachten den Fortschritt etwas nüchterner, aber auch sie erhoffen sich von 6G einen Durchbruch insbesondere für einen intelligenteren Verkehr.
„Autonomes Fahren ist in der Tat eine der Hauptanwendungen, die wir momentan sehen“, sagt Ivan Ndip vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration (IZM) in Berlin. „Autonomes Fahren bedeutet nicht, dass jedes Fahrzeug für sich alleine fährt, ein Ziel ist letzten Endes die Anzahl der Unfälle zu reduzieren.“
Dafür müssten die Autos enorme Datenmengen miteinander austauschen, ebenso mit der Infrastruktur sowie anderen Verkehrsteilnehmern, etwa Fußgängern. Wenn zum Beispiel ein Wagen auf ein Hindernis zurast und eine Vollbremsung macht, dauert es relativ lange, bis der zweite Fahrer reagiert und ebenfalls bremst. In Zukunft kann das erste Auto bei Erkennung des Hindernisses alle anderen Wagen warnen, damit diese sofort bremsen oder eine andere Route nehmen können.
„Es braucht viele Daten aus Radar, Kamera und weiteren Sensoren, und daher reichen die paar Gigabit pro Sekunde von 5G nicht“, sagt Ndip. Es sei ja nicht nur so, dass die Wagen in Echtzeit miteinander kommunizieren, sie fungieren auch als Hotspots für die Menschen in den Autos, die ihre mobilen Geräte für Arbeit und Unterhaltung nutzen, wodurch zusätzliche Daten entstehen.
Leben oder Tod? Im Straßenverkehr können Sekundenbruchteile entscheiden
Eine Anwendung wie das autonome Fahren darf sich keine größeren Latenzen erlauben. Latenzzeiten entstehen bei der Verarbeitung der Funksignale. Damit die IT-Infrastruktur mit großen Datenmengen zurechtkommt, werden Daten in einem Puffer gespeichert, bis sie weiterverarbeitet werden können. Bei der vierten Generation LTE betragen die Latenzen etwa 15 bis 20 Millisekunden.
So viel Zeit vergeht also zwischen dem Moment, in dem wir zum Beispiel im mobilen Browser auf einen Link klicken, bis der Klick ausgeführt wird. Bei 5G liegen die Latenzen unter fünf Millisekunden, bei 6G erhoffen sich die Forscher weniger als 100 Mikrosekunden. Das ist 50 Mal schneller als der Flügelschlag einer Biene. Im Straßenverkehr kann im Ernstfall eine Verzögerung von Millisekunden über Leben und Tod entscheiden.
Aber die verwendeten Terahertz-Wellen haben einen großen Nachteil: Sie liegen näher am Infrarotlicht als an Mikrowellen, deshalb verhalten sie sich ähnlich wie Licht - sie können Mauerwerk nicht durchdringen. Ein Baum kann die Übertragung ebenso stören. Zwar kann man die Reflexionen gezielt nutzen, um eine Übertragung an einem Hindernis vorbeizulenken, aber es kommt noch erschwerend hinzu, dass die Wellen nicht sehr weit reichen. Regen und Nebel schränken sie weiter ein. Somit wird vermutlich kein Weg daran vorbeiführen, eine Stadt mit unzähligen Empfängern auszustatten, womöglich in Abständen von unter 100 Metern.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Die Empfänger können in Ampeln und Laternen verbaut werden, wie das bei 5G teilweise schon geschieht, aber viel häufiger. Und womöglich werden sie zusätzlich ein fester Bestandteil von künftiger Architektur sein. Die Aufgabe der Empfänger ist es, die Signale in unmittelbarer Umgebung an die nächstgrößere Funkzelle weiterzuleiten, die dann an ein Glasfasernetz angeschlossen ist. Die Empfänger müssen klein und günstig herzustellen sein, zudem sollten sie mit wenig Energie auskommen.
Forscher vom Karlsruher Institut für Technologie (KIT) haben bereits einen preiswert herzustellenden Terahertz-Empfänger entwickelt. Er beruht auf einer einfachen Diode, mit der das Signal gleichgerichtet wird. Den Forschern gelang es damit, 115 Gigabit pro Sekunde über eine Distanz von 110 Metern zu übertragen. „Der entscheidende Fortschritt war, dass wir mit einer simplen Diode überhaupt ein Datensignal empfangen können, das in der Phase moduliert ist“, sagt Institutsleiter Christian Koos. Das Problem bei einem Datenempfang mithilfe einer einzelnen Diode sei, dass sich nur die Amplitude der Terahertz-Welle, also die Höhe der gleichgerichteten Wellenberge, messen lässt. Allerdings nutzt man bei der Datenübertragung auch die Phase, also die Position des Wellenbergs innerhalb des Zeitstrahls, zum Codieren von Information.
Die KIT-Forscher haben dies gelöst, indem sie eine bestimmte Signalklasse verwenden, ein sogenanntes analytisches Signal, bei dem sich die Phase aus der Amplitude des gleichgerichteten Signals zurückrechnen und damit die eigentliche Information rekonstruieren lässt. Der Vorteil: Die Diode ist klein und kostengünstig - wichtige Voraussetzungen für den 6G-Einsatz.
* Boris Hänßler ist freier Technikjournalist mit Schwerpunkt Informationstechnik, insbesondere Roboter, Künstliche Intelligenz, Virtuelle Realität und Mensch-Maschinen-Interfaces.