Intelligente Feldsensor-Applikationen stellen hohe Anforderungen an eine Stromversorgung, da die vom Sensor kommenden Signale möglichst ungestört übertragen werden sollen.
Dicht bestückte Implementierung eines synchronen Buck-Wandlers.
(Bild: Bild: Texas Instruments)
Die Funktionalität von Feldsensor-Transmittern, die in industriellen Automations- und Steuerungsanlagen zum Messen von Temperaturen, Drücken, Durchflussmengen, Füllständen und zahlreichen weiteren Prozessgrößen eingesetzt werden, hat viele Dimensionen. Bild 1 zeigt ein Blockschaltbild eines Drucksensor-Transmitters. Enthalten sind ein Quarter-Bridge-Dehnmesstreifen, ein Mikrocontroller (MCU), ein Datenwandler, ein Eingangsverstärker, ein Ausgangstreiber, Isolatoren, eine Displayeinheit, Anschlussoptionen und ein Power-Management-Teil. Bei der Erfassung von Messgrößen in industriellen Umfeldern besteht die entscheidende Herausforderung darin, die vom Sensor kommenden Signale mit ihren geringen Amplituden in der Gegenwart starker Störungen und hoher Stoßspannungen aufzubereiten [1].
Das Eingangssignal des Drucksensors muss in eine präzise elektrische Größe verwandelt und anschließend aus dem Feld über eine robuste Schnittstelle an eine zentrale Steuerungseinheit übertragen werden. Ein Beispiel für eine solche Schnittstelle ist die traditionelle zweiadrige 4-20-mA-Stromschleife, die nach wie vor große Beliebtheit genießt, wenn in industriellen Umgebungen mit hohem Störaufkommen Signale über längere Strecken übertragen werden müssen. Die analoge Schleife kommuniziert einerseits die erfasste Primärvariable (PV) und versorgt andererseits die Messwertgeber-Schaltung mit Strom, sofern dabei die Grenze des minimalen Schleifenstroms nicht überschritten wird [2].
Intelligente Sensorsysteme mit hohem Strombedarf
Während der Mikrocontroller und die Datenwandler einer grundlegenden Messwertgeber-Schaltung in der Regel für geringe Stromaufnahme optimiert sind (Bild 2), haben die Feature-Ausstattung und die umfangreichere Funktionalität von Hochleistungs-Sensoranwendungen einen höheren Strombedarf zur Folge. Intelligente Sensorsysteme dieser Art sind möglicherweise nicht in der Lage, die typischen Bereichsunterschreitungs-Grenzströme oder den Nullpunkt-Strom von 4 mA, wie er von der 4-20-mA-Stromschleife verlangt wird, einzuhalten. Zum Beispiel besitzt ein programmierbarer D/A-Wandler (DAC) und Schleifentreiber wie der DAC161S997 von sich aus einen ERROR_LOW-Grenzstrom von 3,375 mA. Ströme unterhalb dieses Werts werden zur Übertragung von Fehlerinformationen zu Diagnosezwecken verwendet [3].
Um einem über die Stromschleife gespeisten Messwertgeber mehr Leistung zur Verfügung stellen zu können, bietet ein hocheffizienter, geschalteter Hochvolt-Gleichspannungswandler eine eingebaute Stromvervielfachungs-Funktion, die man bei einem klassischen LDO (Low-Dropout-Linearregler) vergeblich sucht.
Ein erhöhtes, über den Bereichsuntergrenzen-Alarm von 3,375 mA hinausgehendes Strombudget gibt den Entwicklern intelligenter Sensorapplikationen den nötigen Freiraum zur Umsetzung neuer Funktionen. Hierzu werden nachfolgend einige Beispiele angeführt.
Messwertgeber mit isoliertem Eingang
Sensor-Messwertgeber mit isoliertem Eingang benötigen eine von der Stromschleifen-Versorgung galvanisch isolierte Versorgungsspannung zum Speisen des Sensors. Die Kommunikation des Sensors über die Isolationsbarriere hinweg erfolgt in der Regel über eine SPI-Schnittstelle (Serial Peripheral Interface) und einen Digitalisolator. Sowohl der Digitalisolator selbst als auch die isolierte Leistungsstufe ziehen allerdings relativ viel Strom. Darüber hinaus benötigt das System auch einen A/D-Wandler (ADC), einen Mikrocontroller und einen DAC, die alle aus dem Strombudget von weniger als 4 mA versorgt werden müssen.
Eine leistungsfähigere Stromquelle ermöglicht auch mehrkanaligen Digitalisolatoren den Betrieb mit schnelleren digitalen Signalen.
Hochleistungs-MCUs für komplexe Berechnungen
Die Linearisierung des Sensorausgangs ist eine wichtige Funktion zur Einhaltung der Genauigkeitsvorgaben. In der Regel werden Hochleistungs-MCUs benötigt, um komplexe Berechnungen auszuführen und unterschiedliche Grade an Rechenleistung bereitzustellen. Hierdurch eröffnen sich vielfältige MCU-Optionen beispielsweise in Bezug auf Taktfrequenz, Speicherausstattung, Konnektivität, Peripherie und Verlustleistungs-Optimierung.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.
Kalibrierung und erweiterte Diagnosefunktionen
Statusinformationen, Kalibrierung und Diagnose lassen den Strombedarf weiter ansteigen. Zum Beispiel beruht die Funktion des HART®-Protokolls darauf, dass dem Gleichstrom der 4-20-mA-Stromschleife ein Signal mit einer Amplitude von 1 mA (Peak to Peak) überlagert wird [4]. Auch die WirelessHART®-Adapter, die zum Abrufen und Übermitteln von Diagnoseinformationen dienen, ziehen Strom aus der Stromschleife des leitungsgebundenen Messwertgebers [5].