Bei einem Lithium-Ionen-Akku (Li-Ionen, Li-Ion) galt es, die Ursache für seinen Ausfall zu bestimmen. Mithilfe eines Computertomographen ließ sich das Innere des Bauteils zerstörungsfrei untersuchen.
Bild 1: Messaufbau an der Hochschule Aschaffenburg mit dem Computertomograph exaCT S von Wenzel. Er ermöglicht den Blick in den Akku und liefert die Erkenntnis: Der Fehler kann beim Zusammenbau der Zelle vermieden werden.
(Bild: Hochschule Aschaffenburg)
Die positive Elektrode (Kathode) des Li-Ionen-Akkumulators setzt sich aus einem Übergangsmetalloxid wie LiCoO2 zusammen, währenddessen die negative Elektrode aus Graphit besteht. Die beiden Elektroden werden durch eine elektrisch isolierende Separatorlage getrennt, um einen Kurzschluss zu vermeiden. Diese dünnen Lagen der Elektroden und des Separators werden auf einen nachträglich entfernbaren Dorn aufgewickelt bis die erforderliche Dicke und somit die gewünschte Kapazität erreicht ist.
Zur Kontaktierung erfolgen eine Verbindung der einen Elektrode mit dem Deckel und eine elektrische Verschweißung der anderen Elektrode mit dem Boden der Zelle. Ein Li-Ionen enthaltender Elektrolyt füllt die Poren der Separatorlage und den verbleibenden Zwischenraum aus. Das Funktionsprinzip dieser Akkumulatoren beruht auf dem Wandern der Li-Ionen durch den Elektrolyt zwischen positiver und negativer Elektrode beim Laden und Entladen.
Der elektrische Ausfall eines Li-Ionen-Akkumulators war Ausgangspunkt für eine Untersuchung an der Hochschule Aschaffenburg (university of applied sciences). Die äußere Hülle des Akkumulators zeigte keinerlei Hinweise auf die Ausfallursache - ein Blick in das Innere war demnach nötig.
Neben zerstörenden Prüfverfahren wie beispielsweise die Metallographie wurden ebenfalls zerstörungsfreie Prüfverfahren wie die Röntgen-Radiographie und die Röntgen-Computertomographie in Betracht gezogen. Die Radiographie liefert nur Überlagerungsbilder, bei denen eine Interpretation oft aufgrund der übereinanderliegenden Strukturen des Bauteils im Röntgenbild erschwert ist, sodass letztlich die Wahl auf die Computertomographie (CT) fiel. Dieses Verfahren liefert dreidimensionale Bilder, die es ermöglichen, beliebige Bereiche des Bauteilinneren zerstörungsfrei zu prüfen.
Aufbau eines dreidimensionalen Datensatzes
Um die Defektursache zu analysieren, wurde der innere Aufbau des Plus- und Minus-Pols mithilfe der Röntgen-Computertomographie auf Fehler untersucht. Dazu wurde der 130-kV-Computertomograph Desktop-CT exaCT S des Herstellers WENZEL Volumetrik eingesetzt, dessen maximale Voxel-Auflösung bei 5 µm liegt (Anm. der Red.: Entsprechend einem Pixel im 2D-Bild ist ein Voxel ein Datenpunkt in der 3D-Grafik; Voxel bedeutet volumetric pixel).
Um den gewünschten dreidimensionalen Datensatz zu erhalten, sind verschiedene zweidimensionale Projektionsbilder nötig. Hierzu muss sich das Prüfobjekt im Verlauf der Messung um 360° in einem Röntgenkegelstrahl drehen. Während der Drehung nimmt der Detektor die Projektionsbilder auf, die sich aus der materialabhängigen Schwächung des Röntgenstrahls zusammensetzen. Aus ihnen wird nun mittels leistungsstarker Rechner ein dreidimensionaler Datensatz von Volumenelementen (Voxeln) rekonstruiert.
Nach der Messung und der Rekonstruktion des Volumens ist es möglich, jede beliebige Schicht des zu prüfenden Bauteils aus unterschiedlichen Perspektiven auf Fehler hin zu überprüfen sowie das Bauteilinnere detailliert darzustellen. Die Volumendaten werden mit der Analysesoftware visualisiert und untersucht.
Bildergalerie
Durch das rekonstruierte Volumen des Akkumulators können beliebige zweidimensionale Schnittebenen gelegt und mit einer Schrittweite im Mikrometerbereich verfahren werden, sodass eine detaillierte Analyse des Bauteilinneren möglich ist (Bild 2). Die horizontale CT-Schnittebene durch den Akkumulator zeigt die aufgewickelten Elektroden- und Separatorlagen des Akkumulators, in die das sogenannte Tabbändchen eingebracht ist (siehe Pfeil). Das Tabbändchen verbindet die positive Elektrode mit dem Deckel der Zelle.
Betrachtet man das Tabbändchen des Plus-Pols aus einer vertikalen Perspektive im CT-Volumenscan (Bild 3), finden sich in der unteren Bildhälfte die Wicklungen wieder, in die das Tabbändchen mündet, und darüber der Anschluss des Tabbändchens an den Plus-Pol. Oberhalb der Wicklungen in der ersten Wendung des Tabbändchens ist deutlich eine Unterbrechung zu sehen (Pfeil), die den elektrischen Ausfall verursacht hat. Durch Verfahren der Schnittebenen vor und hinter der schadhaften Stelle ist zu erkennen, dass sich diese an derselben Position durchgehend über alle weiteren vertikalen Schnittebenen erstreckt und demzufolge das Tabbändchen komplett gerissen ist.
Stand: 08.12.2025
Es ist für uns eine Selbstverständlichkeit, dass wir verantwortungsvoll mit Ihren personenbezogenen Daten umgehen. Sofern wir personenbezogene Daten von Ihnen erheben, verarbeiten wir diese unter Beachtung der geltenden Datenschutzvorschriften. Detaillierte Informationen finden Sie in unserer Datenschutzerklärung.
Einwilligung in die Verwendung von Daten zu Werbezwecken
Ich bin damit einverstanden, dass die Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg einschließlich aller mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen (im weiteren: Vogel Communications Group) meine E-Mail-Adresse für die Zusendung von redaktionellen Newslettern nutzt. Auflistungen der jeweils zugehörigen Unternehmen können hier abgerufen werden.
Der Newsletterinhalt erstreckt sich dabei auf Produkte und Dienstleistungen aller zuvor genannten Unternehmen, darunter beispielsweise Fachzeitschriften und Fachbücher, Veranstaltungen und Messen sowie veranstaltungsbezogene Produkte und Dienstleistungen, Print- und Digital-Mediaangebote und Services wie weitere (redaktionelle) Newsletter, Gewinnspiele, Lead-Kampagnen, Marktforschung im Online- und Offline-Bereich, fachspezifische Webportale und E-Learning-Angebote. Wenn auch meine persönliche Telefonnummer erhoben wurde, darf diese für die Unterbreitung von Angeboten der vorgenannten Produkte und Dienstleistungen der vorgenannten Unternehmen und Marktforschung genutzt werden.
Meine Einwilligung umfasst zudem die Verarbeitung meiner E-Mail-Adresse und Telefonnummer für den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern wie z.B. LinkedIN, Google und Meta. Hierfür darf die Vogel Communications Group die genannten Daten gehasht an Werbepartner übermitteln, die diese Daten dann nutzen, um feststellen zu können, ob ich ebenfalls Mitglied auf den besagten Werbepartnerportalen bin. Die Vogel Communications Group nutzt diese Funktion zu Zwecken des Retargeting (Upselling, Crossselling und Kundenbindung), der Generierung von sog. Lookalike Audiences zur Neukundengewinnung und als Ausschlussgrundlage für laufende Werbekampagnen. Weitere Informationen kann ich dem Abschnitt „Datenabgleich zu Marketingzwecken“ in der Datenschutzerklärung entnehmen.
Falls ich im Internet auf Portalen der Vogel Communications Group einschließlich deren mit ihr im Sinne der §§ 15 ff. AktG verbundenen Unternehmen geschützte Inhalte abrufe, muss ich mich mit weiteren Daten für den Zugang zu diesen Inhalten registrieren. Im Gegenzug für diesen gebührenlosen Zugang zu redaktionellen Inhalten dürfen meine Daten im Sinne dieser Einwilligung für die hier genannten Zwecke verwendet werden. Dies gilt nicht für den Datenabgleich zu Marketingzwecken.
Recht auf Widerruf
Mir ist bewusst, dass ich diese Einwilligung jederzeit für die Zukunft widerrufen kann. Durch meinen Widerruf wird die Rechtmäßigkeit der aufgrund meiner Einwilligung bis zum Widerruf erfolgten Verarbeitung nicht berührt. Um meinen Widerruf zu erklären, kann ich als eine Möglichkeit das unter https://contact.vogel.de abrufbare Kontaktformular nutzen. Sofern ich einzelne von mir abonnierte Newsletter nicht mehr erhalten möchte, kann ich darüber hinaus auch den am Ende eines Newsletters eingebundenen Abmeldelink anklicken. Weitere Informationen zu meinem Widerrufsrecht und dessen Ausübung sowie zu den Folgen meines Widerrufs finde ich in der Datenschutzerklärung, Abschnitt Redaktionelle Newsletter.