Dritter Magnetismus entdeckt Altermagnetismus experimentell bestätigt

Quelle: Pressemitteilung JGU 3 min Lesedauer

Anbieter zum Thema

JGU-Forschende konnten die dritte Art von Magnetismus, den Altermagnetismus, erstmalig nachweisen. Interessant könnte er für die Spintronik sein: Dabei nutzt man das magnetische Moment der Elektronen zum Speichern von Informationen – theoretisch sind damit viel höhere Speicherkapazitäten als etwa bei DRAM möglich.

Die Richtung des Elektronenspins hängt von der Bewegungsrichtung der Elektronen ab. (Bild:  Hans-Joachim Elmers / JGU)
Die Richtung des Elektronenspins hängt von der Bewegungsrichtung der Elektronen ab.
(Bild: Hans-Joachim Elmers / JGU)

Ferromagnetismus und Antiferromagnetismus sind seit Langem bekannt. 2019 postulierten Forschende der Johannes Gutenberg-Universität Mainz (JGU) eine dritte Art von Magnetismus, den Altermagnetismus – was in etwa so viel heißt wie „verändernder Magnetismus“. In Fachkreisen wurde dieser Altermagnetismus bereits viel diskutiert, mitunter auch angezweifelt. Eine experimentelle Gruppe um Prof. Dr. Hans-Joachim Elmers von der JGU konnte nun einen Effekt, der quasi als Signatur des Altermagnetismus gilt, am Deutschen Elektronen-Synchrotron DESY erstmalig messen und die Existenz der dritten Magnetismus-Art damit untermauern. Die Ergebnisse wurden kürzlich im renommierten Magazin Science Advances veröffentlicht.

Altermagnetismus: Eine dritte Art von Magnetismus

Während beim Ferromagnetismus, den man auch von Kühlschrankmagneten kennt, alle magnetischen Momente gleich ausgerichtet sind, wechseln die magnetischen Momente in Antiferromagneten abwechselnd ihre Richtung. Makroskopisch gleichen sich die magnetischen Momente aus, Antiferromagnete haben also kein äußeres Magnetfeld – Kühlschrankmagnete aus diesem Material würden einfach vom Kühlschrank herunterplumpsen. Bei den Altermagneten wiederum ordnen sich die magnetischen Momente auf andere Weise an. „Die Altermagnete verbinden quasi die Eigenschaften von Ferromagneten und Antiferromagneten. Mit Antiferromagneten haben sie gemeinsam, dass die benachbarten magnetischen Momente immer antiparallel zueinanderstehen, also keine makroskopische Magnetisierung auftritt, mit Ferromagneten, dass es einen spinpolarisierten Strom gibt“, erläutert Elmers, Leiter der Arbeitsgruppe Magnetismus am Institut für Physik.

Einheitlicher Spin bei gleicher Bewegungsrichtung

Üblicherweise rufen elektrische Ströme ein Magnetfeld hervor. Schaut man jedoch den gesamten Altermagnet an – integriert man die Spins der Leitungselektronen also über alle Richtungen – muss das Magnetfeld trotz des spinpolarisierten Stroms null ergeben. Engt man das „Sichtfeld“ jedoch ein und betrachtet lediglich Elektronen, die sich in eine bestimmte Richtung bewegen, haben diese einen einheitlichen Spin. „Dieses Ordnungsphänomen hat nichts mit der räumlichen Ordnung zu tun – also mit dem Aufenthaltsort der Elektronen –, sondern nur mit den Richtungen der Elektronengeschwindigkeiten“, sagt Elmers. Da Geschwindigkeit mal Masse den Impuls ergibt, sprechen Physikerinnen und Physiker dabei vom Impulsraum. Dieser Effekt wurde von theoretischen Arbeitsgruppen an der JGU um Prof. Dr. Jairo Sinova und Dr. Libor Šmejkal vorhergesagt.

Nachweis mit Impuls-Elektronenmikroskop gelungen

„Wir konnten diesen Effekt erstmals experimentell nachweisen“, so Elmers. Gelungen ist dieser Nachweis über ein eigens entwickeltes Impuls-Elektronenmikroskop. Darin bestrahlte das Team eine dünne Schicht aus Rutheniumdioxid mit Röntgenlicht. Dieses regte die Elektronen in der Schicht so weit an, dass sie aus der Schicht herausgeschlagen und detektiert werden konnten. Aus der Verteilung der Geschwindigkeiten konnten die Forschenden darauf schließen, wie schnell die Elektronen im Festkörper waren. Nutzten sie zirkular polarisiertes Röntgenlicht, konnten sie zudem Aussagen über die Spinrichtung treffen.

Anders als bei der üblichen Elektronenmikroskopie verändern die Forschenden beim Impulsmikroskop die Brennebene – und sehen auf dem Detektor nicht eine vergrößerte Abbildung der Oberfläche des untersuchten Rutheniumdioxid-Films, sondern eine Darstellung des Impulsraums. „Unterschiedliche Impulse treffen auf unterschiedliche Positionen auf dem Detektor. Vereinfacht könnte man sagen, die verschiedenen Richtungen, in die die Elektronen sich in der Schicht bewegen, werden in unterschiedlichen Punkten abgebildet“, sagt Elmers.

Interessant könnte das Experiment für die Spintronik sein: Statt auf DRAMs setzt man dabei auf das magnetische Moment der Elektronen – die Speicherkapazität lässt sich auf diese Weise deutlich steigern. „Die Ergebnisse dürften eine wesentliche Problematik im Bereich der Spintronik lösen“, vermutet Elmers. „Verwendet man Altermagnete, lassen sich gespeicherte Information durch die Spinpolarisation der Leitungselektronen leichter auslesen.“ (me)

(ID:49910903)

Jetzt Newsletter abonnieren

Verpassen Sie nicht unsere besten Inhalte

Mit Klick auf „Newsletter abonnieren“ erkläre ich mich mit der Verarbeitung und Nutzung meiner Daten gemäß Einwilligungserklärung (bitte aufklappen für Details) einverstanden und akzeptiere die Nutzungsbedingungen. Weitere Informationen finde ich in unserer Datenschutzerklärung. Die Einwilligungserklärung bezieht sich u. a. auf die Zusendung von redaktionellen Newslettern per E-Mail und auf den Datenabgleich zu Marketingzwecken mit ausgewählten Werbepartnern (z. B. LinkedIn, Google, Meta).

Aufklappen für Details zu Ihrer Einwilligung